1 Sensor Measures Pressure, Humidity & Temperature!

Posted by Seta Davidian on Aug 19, 2015 11:09:00 AM

pressure humidity temperature sensorSensors are rapidly changing with increased functionality in MEMs technologies.  The new MS8607-02BA01 exemplifies how new technology is creating amazing new sensors.

The MS8607 measures pressure, humidity and temperature in a small QFN package measuring only 5 mm3 x 3 mm3 x 1 mm3. Inside this small package is a piezoresistive sensor providing pressure and temperature and a capacitive-type sensor for measuring relative humidity.  The measured signals are converted into a 24-bit digital value for pressure and temperature and a 12-bit digital value for relative humidity measurement.

The sensor requires 8 pads for operation, uses I2C communication and operates with a very low 1.8 to 3.6  supply voltage. With an operating pressure range of 10 to 2000 mbar, it has a pressure accuracy of ±2.0 mBar and pressure resolution of 0.016 mBar. For humidity, the measuring range is 0-100% rH with an accuracy of ±3% rH and a resolution of 0.04% rH. Finally, for temperature, the operating range is -40°C to +85°C with a temperature accuracy of ±2°C and resolution of 0.01°C.

The MS8607 is ideal for applications in the consumer and industrial marketplace, including smartphones, tablets, printers, HVAC applications, weather stations, home appliances, humidifiers and much more.

Learn more about the MS8607.

Get budgetary pricing for the MS8607 and other barometric pressure sensors offered by Servoflo.

Download Barometric  Product & Pricing Guide

Topics: Humidity Sensors, Barometric Pressure Sensors

Why We Love the HTU20/21 Humidity Sensor Chips

Posted by Seta Davidian on Aug 4, 2015 12:40:35 PM

digital humidity sensor with PTFE filterThe HTU20/21 are tiny humidity and temperature sensors in a 3 mm x 3 mm x 0.9 mm DFN package. This tiny sensor packs a punch due to its:

  • Humidity operating range of 0-100%
  • Temperature range of -40°C to +125°C
  • Supply voltage of 0.3 to 3.6 VDC
  • Optional PTFE filter (F) option (shown in image on right)
  • No calibration required in standard conditions, allowing for full interchangeability
  • Instantaneous desaturation after long periods in saturation phase

Every sensor is individually calibrated and tested. The lot ID is printed on the sensor and an electronic ID is stored in the chip. Resolution can be changed by command from 8/12 bit up to 12/14 bit. A fast response time of 2 ms (using 8 bit resolution) up to 14 ms (using 12 bit resolution) gives designers flexibility in managing their humidity measurement.

HTU21D digital humidity sensor without filterFor temperature measurement, the accuracy is ±0.3°C at 25°C. The resolution is 0.01°C at 14 bit resolution and 0.04°C at 12 bit resolution.

The HTU20 has an accuracy of ±5% from 20-80% rH while the HTU21 has an accuracy of ±3% in that same humidity range. There are 2 output choices in each family: The P version has a pwm output while the D version has I2C. 

Best of all, the price of the HTU humidity sensors is extremely competitive. At 5,000 pieces, the price is between $1.46 to $1.95 each depending on the model.

Applications for the HTU20/21 family include medical, home appliances, printers, humidifiers, smart phones/tablets, indoor air quality and more.

Get the complete specification for HTU20/21.

Is this not the humidity sensor you are looking for? Then check out our complete line of analog and digital humidity sensors and transducers. We also have a product & pricing guide for your review.

Download Humidity  Product & Pricing Guide

 

Topics: Humidity Sensors

The Importance of Humidity Sensor Element Accuracy

Posted by Seta Davidian on Feb 6, 2012 12:04:00 PM

hyt 271 header 2Sensor technology has changed dramatically over the past few years. Previously, customers purchased the sensor elements and electronics and calibrated a sensor themselves. The development of improved electronics, MEMs technology and efficient manufacturing technology has created a new humidity sensor market - fully calibrated humidity sensors with an I2C output. Many companies are offering models with similar features.

Yet, price and performance does vary significantly between models, making it important for users to understand the the performance of a humidity sensor over the entire range. This data is often well hidden in fine print in data sheets.

IST, the supplier of our HYT digital humidity elements and the new sensor elements P14, tested 4 different humidity sensors at 85% rH @ 30C for 65 hours. 2 competitors, the HYT271, and the P14 humidity element were tested. The 2 competitors units showed a 1.25% and 2.5% deviation in readings compared to only 0.17% for the HYT271 and 0.09% for the P14.

What does this mean for designers trying to choose a humidity sensor? The humidity sensor element (such as P14) plays a critical role in the performance of a fully integrated and compensated humidity sensor. Electronics is limited in compensating for poor signals a sensor element sends. The combination of good sensor elements and electronics is the key to sensor design.

The integration of a sensor element and electronics is fairly straightforward. However, if performance over time and at extreme conditions is critical for your application, take the time to research the quality and stability of the sensor element used. Saving a little in upfront component cost could end up costing you much more in the long run!

Click me

Topics: Humidity Sensors

Digital Humidity Sensor White Paper in Design News

Posted by Seta Davidian on Sep 26, 2011 1:31:00 PM

digital humidity sensor with I2C outputRecently an article was published in Design News about digital humidity sensors offered by Servoflo.

Typical problems of traditional integrated sensor solutions include poor accuracy, unstable behavior around the measuring range limits and unsatisfactory chemical resistance against contaminants. Additional limitations are lack of dew formation resistance, inadequate long-term stability and failure during load spikes.

This article provides technical details about how these problems are solved with new digital humidity sensor technology. In depth details about design features and manufacturing techniques are discussed. Topics include ASIC functionality and design, construction, and what this means for the functionality of the humidity sensor.

Anyone who is considering designing in a digital humidity element should take a quick look at this topic. Please feel free to post a comment or question.

Read the complete article here.

Topics: Humidity Sensors